Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 54(5): e10637, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153548

ABSTRACT

Transcription factors control, coordinate, and separate the functions of distinct network modules spatially and temporally. In this review, we focus on the transcription factor 21 (TCF21) network, a highly conserved basic-helix-loop-helix (bHLH) protein that functions to integrate signals and modulate gene expression. We summarize the molecular and biological properties of TCF21 control with an emphasis on molecular and functional TCF21 interactions. We suggest that these interactions serve to modulate the development of different organs at the transcriptional level to maintain growth homeostasis and to influence cell fate. Importantly, TCF21 expression is epigenetically inactivated in different types of human cancers. The epigenetic modification or activation and/or loss of TCF21 expression results in an imbalance in TCF21 signaling, which may lead to tumor initiation and, most likely, to progression and tumor metastasis. This review focuses on research on the roles of TCF21 in development and tumorigenesis systematically considering the physiological and pathological function of TCF21. In addition, we focus on the main molecular bases of its different roles whose importance should be clarified in future research. For this review, PubMed databases and keywords such as TCF21, POD-1, capsulin, tumors, carcinomas, tumorigenesis, development, and mechanism of action were utilized. Articles were selected within a historical context as were a number of citations from journals with relevant impact.


Subject(s)
Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinogenesis/genetics , Signal Transduction , Cell Differentiation , Cell Transformation, Neoplastic/genetics
2.
Braz. j. med. biol. res ; 48(12): 1087-1094, Dec. 2015. graf
Article in English | LILACS | ID: lil-762914

ABSTRACT

During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.


Subject(s)
Animals , Male , Adrenal Cortex/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phosphoproteins/metabolism , Steroidogenic Factor 1/metabolism , Adrenal Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/genetics , Electrophoresis, Polyacrylamide Gel , Gene Expression , Immunoblotting , Primary Cell Culture , Phosphoproteins/analysis , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/analysis , Steroidogenic Factor 1/analysis , Zona Fasciculata/cytology , Zona Fasciculata/metabolism , Zona Glomerulosa/cytology , Zona Glomerulosa/metabolism , Zona Reticularis/cytology , Zona Reticularis/metabolism
3.
Braz. j. med. biol. res ; 33(10): 1133-40, Oct. 2000. ilus
Article in English | LILACS | ID: lil-270216

ABSTRACT

This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a) rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK) (2 to 10 min), b) transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min), c) induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d) onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.


Subject(s)
Humans , Animals , Adrenal Cortex/cytology , Receptors, Corticotropin/physiology , Signal Transduction/physiology , Adrenal Cortex Neoplasms , Cell Cycle/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase C/metabolism , Receptors, Fibroblast Growth Factor/physiology , Tumor Cells, Cultured/physiology
4.
Braz. j. med. biol. res ; 32(7): 841-3, July 1999.
Article in English | LILACS | ID: lil-234889

ABSTRACT

FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth


Subject(s)
Animals , Mice , Adrenal Cortex Neoplasms , Adrenocorticotropic Hormone/pharmacology , Mitogen-Activated Protein Kinase 1/pharmacology , Proto-Oncogene Proteins c-fos/pharmacology , Receptors, Fibroblast Growth Factor/drug effects , Cell Transformation, Neoplastic/drug effects , Drug Interactions
SELECTION OF CITATIONS
SEARCH DETAIL